IHttpClientFactory Patterns: Using Typed Clients from Singleton Services Exploring an approach to reuse transient typed clients within singleton services

I’ve been following IHttpClientFactory for some time and have created a number of blog posts on the various features based on sample applications. Since then; with the release of ASP.NET Core 2.1 now available, I’ve begun using IHttpClientFactory in real production applications. In this post, I want to start covering some patterns I’ve begun to apply as I develop my applications.

This time I want to look at an issue regarding the scope of typed clients. This is based on something I’ve now directly encountered and that was raised as a comment on an earlier post by a reader named Yair.

When defining typed clients in your ConfigureServices method, the typed service is registered with transient scope. This means that a new instance is created by the DI container every time one is needed. The reason this occurs is that a HttpClient instance is injected into the typed client instance. That HttpClient instance is intended to be short lived so that the HttpClientFactory can ensure that the underlying handlers (and connections) are released and recycled.

This works in cases where you plan to consume the typed service from another transient service. A common place to use these in ASP.NET Core will be places such as Controllers for example. That works as expected since the controller is created by the framework for each request.

However, what if you want to use the typed client within a singleton service? That presents a problem. If this was allowed it would be created and injected once, and then held onto by the singleton service. This is not the behaviour we want.

Originally, when asked by Yair about how to use HttpClientFactory in singleton services I suggested instead using the named client approach and then injecting the IHttpClientFactory directly to your singleton service. From there, you can call CreateClient on the factory within methods on that singleton service, so that for each invocation, a new HttpClient is created for only a short lifetime.

The problem is that if we don’t get the typed client behaviour where we can encapsulate the work necessary to interact with a third party API as a service. Instead, we would have to make a service that depends on the IHttpClientFactory as I suggested above and then pass that into the necessary places in our code.

Having now tackled this in a real project where I am essentially building an SDK around an internal API that I’ve developed I have reassessed the options. What I ended up doing was using the typed client approach, but also providing my own factory which can return instances of that typed client. This is actually very simple to do by leveraging the DI service provider directly.

Here is an example of a typed client and its interface:

I won’t dive deeply into how this service works. It’s a typed client and you can read my earlier post about named and typed clients for more information.

In short; this service expects to have a HttpClient instance injected when it is created by the DI container. It then wraps the logic needed to call various endpoints of a remote API. Within this service, we can include the code needed to validate the response and deserialise the returned content from the request.

We can register the typed client in our ConfigureServices method as follows:

At this point, we have a typed client which can be consumed from other transient services and controllers. To make this accessible to singleton services in our application we can add a basic factory.

Here we have created a basic interface for an IConfigurationServiceFactory which defines a single GetConfigurationService method.

The implementation takes an IServiceProvider in its constructor, which will be injected by DI. With access to the service provider, we can use it to return an instance of IConfigurationService from the GetConfigurationService method. As this is a transient typed client, a new instance will be returned each time this method is called.

In ConfigureServices, we can register the factory with DI as a singleton:

As this is a singleton, we can consume this from any class where we need access to an instance of the typed client, even if that class is registered with singleton scope in DI.

The important thing here is that we don’t create an instance of the IConfigurationService and hold onto it for the lifetime of the singleton service. We can hold the IConfigurationServiceFactory and then we must use that whenever a method needs to get access to the IConfigurationService.

I’m sure there may be other ways to achieve similar results but I’m fairly happy with this approach for now.

Related Posts

Part 1 – An introduction to HttpClientFactory
Part 2 – IHttpClientFactory – Defining Named and Typed Clients
Part 3 – IHttpClientFactory – Outgoing request middleware with handlers
Part 4 – IHttpClientFactory – Integrating with Polly for transient fault handling

HttpClientFactory in ASP.NET Core 2.1 (Part 2) Defining Named and Typed Clients

In my last post – An introduction to HttpClientFactory – I explained some of the reasons behind the creation of the feature. We looked at what problems it helps solve and then followed a very basic example showing how it can be used in a WebAPI application. In this post I want to dive into two other ways we can make use of it; returning named clients and typed clients.

IMPORTANT NOTE: the features shown here require the current nightly builds of the SDK and the .NET Core and ASP.NET Core libraries. I won’t cover how to get those in this post. Treat this as an early preview of how the feature will work so that you can begin planning where and how you will use it once 2.1 is publicly available. Unless you have an urgent need to try this out today, I’d recommend waiting until the 2.1 previews are released, hopefully within the next month or so.

This should all be correct as of ASP.NET Core 2.1 RC1

Named Clients

In the first post, I demonstrated how we could use the HttpClientFactory to get a basic HttpClient instance. That’s fine when you just need to make a quick request from a single place in your code. Often though you’ll want to make multiple requests to the same service, from multiple places in your code.

HttpClientFactory makes this slightly easier by providing the concept of named clients. With named clients, you can create a registration which includes some specific configuration that will be applied when creating the HttpClient. You can register multiple named clients which can each come pre-configured with different settings.

To make this slightly more concrete, let’s look at an example. In my Startup.ConfigureServices method I’ll use a different overload of the AddHttpClient extension method which accepts two additional parameters. A name and an Action delegate taking a HttpClient. My ConfigureServices looks like this:

The first string parameter is the name used for this client registration. The Action<HttpClient> delegate allows us to configure our HttpClient when it is constructed for us. This is pretty handy as we can predefine a base address and some known request headers for example. When we ask for a named client, a new one is created for us and it’ll have this configuration applied each time.

To use this we can ask for a client by name when calling CreateClient as follows:

In this example, we now have an instance of a HttpClient which has the base address set, so our GetStringAsync method can pass in the relative URI to follow the base address.

This named approach gives us some control over the configuration applied to the HttpClient which we receive. I’m not a huge fan of the magic strings here so if I were using named clients I’d likely have a static class containing string constants for the names of the clients. Something like this:

When registering (or requesting) a client we can then use the static class values, instead of the magic string:

This is pretty nice, but we can go a step further and look at using a custom typed client instead.

Typed Clients

Typed clients allow us to define custom classes which expect a HttpClient to be injected in via the constructor. These can be wired up within the DI system using extension methods on the IHttpClientBuilder or using the generic AddHttpClient method which accepts the custom type. Once we have our custom class, we can either expose the HttpClient directly or encapsulate the HTTP calls inside specific methods which better define the use of our external service. This approach also means we no longer have magic strings and seems quite reasonable.

Let’s look at a basic example. We’ll start by defining our custom typed client class:

This class needs to accept a HttpClient as a parameter on its constructor. For now, we’ve set a public property with the instance of the HttpClient.

We then need to register this in ConfigureServices as follows:

We pass our MyGitHubClient type as the generic argument to AddHttpClient. This will be registered with a transient scope in DI. As our custom typed class accepts a HttpClient this will be wired up within the factory to create an instance with the appropriately configured HttpClient injected in. We can now update our controller to accept our typed client instead of an IHttpClientFactory:

Since our custom typed client exposes its HttpClient as a property we can use that to make HTTP calls directly.

Encapsulating the HttpClient

The final example I want to look at in this post is a case where we want to encapsulate the HttpClient entirely. This approach is most likely used when we want to define methods which handle specific calls to our endpoint. At this point, we could also encapsulate the validation of the response and deserialisation within each method so that it is handled in a single place.

In this case, we’ve stored the HttpClient that gets injected at construction in a private readonly field. Instead of dependants of this class accessing the HttpClient directly, we have provided a GetRootDataLength method which performs the HTTP call and returns the length of the response. A trivial example but you get the idea!

I also updated the typed client to inherit from an interface. We can now update the controller to accept and consume the interface as follows:

We can now call the GetRootDataLength method as defined on our interface, without needing to interact with a HttpClient directly. Where this really shines is testing, we can now easily mock our IMyGitHubClient when we want to test this controller. Testing HttpClient in the past was a bit of a pain and took more lines of code than I generally like to provide a suitable mock.

To register this in our DI container our call in ConfigureServices becomes:

The AddHttpClient has a signature which accepts two generic arguments and wires up DI appropriately.


In this post, we’ve explored some of the more advanced ways we can use the HttpClientFactory feature which allows us to create different HttpClient instances with specific named configurations. We then looked at the option of using typed clients which extends this to further support implementing our own classes, which accept a HttpClient instance. We can either expose that HttpClient directly or encapsulate the calls to the remote endpoint within this class.

In the next post we’ll take a look at another pattern we can use to apply an “outgoing request middleware” approach using DelegatingHandlers.

Other Posts in this Series

Part 1 – An introduction to HttpClientFactory
Part 2 – This post
Part 3 – The Outgoing Request Middleware Pipeline with Handlers
Part 4 – Integrating with Polly for transient fault handling